Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
    Users Online: 190
Home Print this page Email this page Small font size Default font size Increase font size

 Table of Contents  
Year : 2015  |  Volume : 4  |  Issue : 2  |  Page : 83-87

Effects of vitamin D supplementation on anthropometric indices in vitamin D-deficient obese Saudi females; a randomized controlled trial

Department of Physiology, College of Medicine, University of Dammam, Dammam, Saudi Arabia

Date of Web Publication16-Jun-2015

Correspondence Address:
Rabia Latif
Department of Physiology, College of Medicine, University of Dammam, Dammam
Saudi Arabia
Login to access the Email id

Source of Support: Deanship of Scientific Research, University of Dammam, Saudi Arabia, Conflict of Interest: None

DOI: 10.4103/2278-0521.157863

Rights and Permissions

Background and Aim: Vitamin D (VD) is well-known for its traditional but essential role in calcium homeostasis and bone metabolism. However, the evidence suggests that VD endocrine system is linked to obesity as well. In adults, an inverse relationship has been reported between adiposity and circulating VD. The purpose of present study, therefore, was to investigate the effect of VD supplementation on anthropometric indices in a population of VD deficient obese Saudi females. Materials and Methods: It was a randomised controlled trial (RCT) for which 30 vitamin D deficient obese female students were recruited from our university and divided as: 1) Vitamin D group (oral 50,000 IU cholecalciferol/week for 8 weeks and 2) Placebo group (sterile drops). Weight, height, waist and hip circumference were recorded. Body mass index (BMI) and waist-hip ratio were calculated at the beginning and in the end. Statistical Analysis: Two sample t-test, paired t-test and Pearson correlation. Results: After treatment with 50,000 IU of VD weekly for 8 weeks, a significant decrease in waist circumference was observed in VD group compared to their pre-treatment measurement (100.8 ± 8.4 vs 96.7 ± 10.4; P = 0.04), although there was no significant change in any other variables (P > 0.05). No significant differences were observed among the groups in the beginning or in the end. Serum VD levels were not significantly related to any of the anthropometric variables at baseline in both groups. Conclusions: Correction of 25 (OH) D concentrations led to significant reduction in waist circumference in VD deficient young Saudi obese female students without affecting other anthropometric indices.

Keywords: Obesity, randomised controlled trial, Vitamin D, waist circumference

How to cite this article:
Al-Mulhim NS, Eldin TG, Latif R, Al-Asoom LI, Al-Sunni A. Effects of vitamin D supplementation on anthropometric indices in vitamin D-deficient obese Saudi females; a randomized controlled trial. Saudi J Health Sci 2015;4:83-7

How to cite this URL:
Al-Mulhim NS, Eldin TG, Latif R, Al-Asoom LI, Al-Sunni A. Effects of vitamin D supplementation on anthropometric indices in vitamin D-deficient obese Saudi females; a randomized controlled trial. Saudi J Health Sci [serial online] 2015 [cited 2023 Mar 22];4:83-7. Available from: https://www.saudijhealthsci.org/text.asp?2015/4/2/83/157863

  Introduction Top

Obesity is increasing at an alarming rate in Saudi Arabia. In a community-based national epidemiological health survey, the prevalence of overweight and obesity were found to be 36.9 and 35.5% respectively. Females were significantly more obese than males (P < 0.0001). [1] Another survey conducted in eastern province only, the overall prevalence of obesity and overweight was found to be 43.8 and 35.1% respectively. [2] Another study found that the Eastern province has the highest rates of obesity. [3] Most recently, the World Health Organisation (WHO) global status reported a high prevalence of obesity in Saudi Arabia, around 33% of total population where sex variation was obvious with more prevalence in females (around 39.1%) than in males (28.65%). [4] Overall, these studies outline that obesity is highly common in Saudi populations and more common in female adults, which highlights the need for a well-structured obesity prevention programmes.

Vitamin D (VD) is well-known for its traditional but essential role in calcium homeostasis and bone metabolism. However, the evidence suggests that VD endocrine system is linked to obesity as well. In adults, an inverse relationship has been reported between adiposity and circulating VD [5],[6],[7],[8],[9] even after adjustment for age, lifestyle, and Parathyroid Hormone (PTH). [10] Low levels of VD were common in obesity [11] and were independently associated with increased Body Mass Index (BMI) and body fat; in both children [12],[13] and adults. [14] In addition, overweight and obese females lost more body fat when their VD concentrations were higher. [14] Many researchers have reported strong negative correlation between 25 (OH) D levels and visceral adipose tissues in obese adolescents [15] and with visceral and skin adipose tissues in young women. [16] Several studies have investigated the effect of VD supplementation on body fat of human subjects. [17],[18] The double-blind, randomised clinical trial by Salehpour et al., [18] demonstrated that the consumption of 25 μg/d of cholecalciferol for 12 weeks caused a statistically significant reduction in body fat mass in healthy overweight and obese women. In addition, Salibah et al., [19] showed that BMI is inversely associated with increase in serum 25 (OH) D levels in response to VD supplementation.

Collectively, all these studies suggest that, in overweight and obese subjects, VD supplementation may lead to a reduction in body weight and adipose tissues. Though more needs to be learned about the mechanism underpinning VD-induced weight loss, the available data highlight the probable role of VD in favourable decrease of obesity. The purpose of present study, therefore, was to investigate the effect of VD supplementation on anthropometric indices in a population of VD deficient obese females. We hypothesised a greater loss of body weight in VD supplemented group as compared to placebo.

  Material and methods Top

Approval of this randomised, placebo controlled study was granted by Institution Review Board of our university. All Saudi females studying at health colleges in our university (N = 698) were assessed for eligibility criteria. Our inclusion criteria were 18-23 years old obese (BMI >30 kg/m 2 ), VD deficient (serum 25 (OH) VD <20ng/ml (<50 nmol/l) [20] Saudi females willing to participate. Students with history of any systemic illness, regularly taking multivitamins especially VD, Pregnancy or lactation were excluded from the study. Out of 46 students meeting the inclusion criteria, 10 students withdrew consent for personal reasons and four students were excluded due to recent major weight loss. Remaining 32 obese female students were screened for VD deficiency out of which two students were found to be VD sufficient; hence excluded from the study.

Study participants were randomly assigned into VD group (received 50,000 IU/wk of vitamin D3 drops) or placebo group (received normal saline drops/wk) for 8 weeks duration. A block randomisation procedure with serial entry in blocks was used. [21] Four participants were included in each block, ensuring that within each block two participants were allocated to VD group and two were allocated to placebo group. All participants from both groups received their dose under supervision in the Physiology department laboratory, college of medicine of our university. Participants were advised to maintain their usual diets and avoid taking VD supplementation on their own throughout the study period.

VD status was assessed by measuring serum 25 (OH) VD level by Enzyme-linked Immunosorbent Assay (ELISA) before randomisation to involve only VD deficient subjects. Anthropometric variables were obtained at the beginning and in the end of the study. Subjects were asked to void their bladders before measurement and to wear light clothes. Height was measured barefoot using a stadiometer to the nearest 0.1 cm and weight was obtained to the nearest 0.1 kg using a digital scale. BMI was calculated as weight (kg)/height (m) 2 . Waist circumference was measured using plastic tape to the nearest 0.1 cm.

Statistical analysis

The data were analyzed using Microsoft Office Excel and the Statistical Package of Social Science (SPSS-IBM) version 20. Data are presented as Means ± Standard Deviation (SD). Differences between groups were assessed by a two-sample t-test. Paired sample t-test was used to compare changes within each group (Pre and Post treatment) of all variables. Pearson correlation was used to find the relationship between serum VD and various anthropometric variables at baseline in both groups. A 'P' < 0.05 was taken as statistically significant.

  Results Top

Baseline characteristics of subjects are shown in [Table 1]. No significant difference was observed in baseline characteristics between groups. The paired t-test results demonstrated that, the mean values of body weight and body mass index were insignificantly increased after treatment with placebo and insignificantly decreased after VD treatment. Interestingly, the mean values of waist circumference was found to be significantly decreased after treatment within VD group with P = 0.04 [Table 2]. However, no significant difference was found within the placebo group.
Table 1: Baseline characteristics of study participants

Click here to view
Table 2: Anthropometric indices before and after treatment with vitamin D or placebo in both groups

Click here to view

The mean values of hip circumference and waist to hip ratio after treatment was similar to baseline, with no significant differences were found within the groups.

The comparison of the post- treatment results of body weight, BMI, waist circumference, hip circumference and waist to hip ratio between placebo group and VD group revealed no significant differences between the groups [Table 3].
Table 3: Comparison of the post-treatment anthropometric results between the placebo and vitamin D group

Click here to view

Serum VD levels were not significantly related to any of the anthropometric variables at baseline in both groups [Table 4].
Table 4: Correlations between 25 (OH) D and anthropometrics indices at baseline for vitamin D group and placebo group

Click here to view

  Discussion Top

In this randomised placebo controlled study, VD supplementation for 8 weeks in obese VD deficient Saudi females demonstrated a significant reduction in waist circumference compared to the pre-treatment value in the treated group only. However no significant effect on other anthropometric measurements was demonstrated in this group. Furthermore no significant differences were shown in all anthropometric data in VD treated group as compared to the placebo.

BMI is merely a ratio of weight in relation to height. It is not a direct measurement of body fat, and notably this ratio offers no information about distribution of body fat. Contrarily, the measurement of waist circumference provides information about fat distribution. Waist circumference is considered a comparatively good indicator of visceral fat accumulation. [22] Hence our results indirectly indicate a significant decrease in visceral adipose tissue by VD supplementation.

Our results are in concordance with a recent randomised controlled trial (RCT) in which VD supplementation has resulted in a significant loss of visceral fat without affecting lean body mass or BMI. [23] Research conducted by Rosenblum et al., also support our results who suggested that VD supplementation contributes to a beneficial reduction of visceral adipose tissues in overweight and obese adults. [24] In another RCT, Major et al., also documented visceral fat loss independent of energy restriction induced by VD supplementation; suggesting a beneficial effect of VD intake on weight management. [25] Our finding is consistent with those of Mason et al., [26] who found that women who received 2000 IU/d oral vitamin D3 for 12 months and became replete [25 (OH) D ≥ 32ng/ml] had a greater improvement in waist circumference compared with women who did not become replete despite vitamin D3 supplementation (-6.6 cm compared with -−2.5 cm; P = 0.02).

On the other hand, our finding differs from that of Gallagher JC et al., [27] who showed that after one-year treatment with VD (400-4800 IU/d) in VD deficient obese, there was no significant effect of VD on body fat mass (measured by Dual energy X-ray absorptiometry) in VD deficient subjects. However that study may not directly comparable with ours due to the differences in dosage of VD (4800 IU/day VS 50,000 IU/week), supplementation period (1 year vs 8 weeks), ages of the subjects (57-90 vs 18-25 years old), ethnicity (Caucasians vs Arab), and methodology used to measure body fat (dual-energy X-ray absorptiometry; a more precise and accurate method vs WC; a crude method). Similarly the study conducted by Belecnchia et al., [28] showed that vitamin D3 supplementation (4000 IU/d) for 6 months had no effect on anthropometric variables including waist circumference in obese adolescent patients. This inconsistency in results can be explained by differences in VD dosage used (4000 IU/day vs 50000 IU/week).

The underlying mechanism of VD-induced reduction in WC and loss of adipose tissue can be explained by the fact that the lack of VD leads to secondary hyperparathyroidism, [29] which may promote an increase in free intracellular calcium into adipocytes, [30] and, thereby enhance lipogenesis by impeding the catecholamine-induced lipolysis, [31],[32] and also by promoting expression of fatty acid synthase. [33] This causes fat accumulation leading to obesity. Restoration of VD to normal levels may reverse the whole process and may lead to fat loss.

Our data show no change in BMI after 8-week VD supplementation period. This is in agreement with four interventional studies demonstrated that VD supplementation has no effect on body weight. For example, the 12-month, randomised, double-blind clinical trial conducted by Sneve et al., [34] revealed that significant weight reduction in overweight and obese subjects is unlikely to occur with supplementation of 20,000 IU of cholecalciferol along with 500 mg calcium twice a week. Furthermore, a double-blind, randomised study for one year found that no significant differences in body weight and BMI was observed between a VD group after supplementation of 3332 IU/d of vitamin D 3 and a placebo group. [35] Another randomised, placebo-controlled study investigated the association between anthropometric measures of adiposity and serum 25 (OH) D after a supplementation of 15 μg/d cholecalciferol in healthy young and old Irish adults. It was found that BMI in younger adults was insignificantly associated with the change in 25 (OH) D after supplementation. [17]

  Conclusion Top

Correction of 25 (OH) D concentrations lead to significant reduction in waist circumference in VD deficient young Saudi obese female students without affecting other anthropometric indices.


The strengths of our study include the use of a RCT design and assessment of study compliance through weekly follow-ups. Likewise, expected increase in VD concentrations in all members of the VD supplemented group also support good participant compliance.


Several limitations of the study should be noted which include the small sample size and the short duration of the study. Our trial lasted for only 8 weeks, and a longer study may have resulted in favourable improvements in other anthropometric indexes as well. We recruited subjects with BMI >30 kg/m 2 and, hence, our results may not be applicable to a leaner population. The study was not blinded at all. Moreover, the recruitment of primarily Saudi females limited the ability to generalize our findings to males or other ethnic groups. Last but not the least; the study is limited by the lack of dietary records which might have possibly influenced results.

Clinical implication of our study

Waist circumference measurement is increasingly recognised as being a more important tool than simple BMI measurement because determining an individual's waist circumference measurement gives a vague idea about the amount of visceral fat. Visceral fat in particular appears to be associated with insulin resistance which leads to type 2 diabetes and adverse lipid profiles which in turn predispose to cardiovascular disease. If VD supplementation reduces waist circumference or in another words, visceral fat, then it may decrease an individual's health risks associated with overweight and obesity.

  Acknowledgement Top

The authors acknowledge the financial support given by Deanship of Scientific Research, University of Dammam, through Grant number P2012011 for conducting this research.

  References Top

Al-Nozha MM, Al-Mazrou YY, Al-Maatouq MA, Arafah MR, Khalil MZ, Khan NB, et al. Obesity in Saudi Arabia. Saudi Med J 2005;26:824-9.  Back to cited text no. 1
Al-Baghli NA, Al-ghamdi AJ, Al-Turki KA, El Zubaier AG, Al-Ameer MM, Al-Baghli FA. Overweight and obesity in eastern province of Saudi Arabia. Saudi Med J 2008;29:1319-25.  Back to cited text no. 2
El-Hazmi MA, Warsy AS. A comparative study of prevalence of overweight and obesity in children in different provinces of Saudi Arabia. J Trop Pediatr 2002;48:172-7.  Back to cited text no. 3
World Health Organization. Non-communicable diseases country profiles 2011 WHO global report, 2011.  Back to cited text no. 4
Arunabh S, Pollack S, Yeh J, Aloia JF. Body fat content and 25-hydroxyvitamin D levels in healthy women. J Clin Endocrinol Metab 2003;88:157-61.  Back to cited text no. 5
Bell NH, Epstein S, Greene A, Shary J, Oexmann NJ, Shaw S. Evidence for alteration of the vitamin D-endocrine system in obese subjects. J Clin Invest 1985;76:370-3.  Back to cited text no. 6
Kamycheva E, Joakimsen RM, Jorde R. Intakes of calcium and vitamn D predict body mass index in population of Northern Norway. J Nutr 2003;133:102-6.  Back to cited text no. 7
Parikh SJ, Edelman M, Uwaifo GI, Freedman RJ, Semega-Janneh M, Reynolds J, et al. The relationship between obesity and serum 1,25-dihydroxy vitamin D concentrations in healthy adults. J Clin Endocrinol Metab 2004;89:1196-9.  Back to cited text no. 8
Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 2000;72:690-3.  Back to cited text no. 9
Jungert A, Roth HJ, Neuhäuser-Berthold M. Serum 25-hydroxyvitamin D 3 and body composition in an elderly cohort from Germany: A cross-sectional study. Nutr Metab (Lond) 2012;9:42.  Back to cited text no. 10
Robinson C, Chiang M, Thompson SN, Sondike SB. Occurrence of vitamin D deficiency in pediatric patients at high risk in West Virginia. South Med J 2012;105:504-7.  Back to cited text no. 11
Lee SH, Kim SM, Park HS, Choi KM, Cho GJ, Ko BJ, et al. Serum 25-hydroxyvitamin D levels, obesity and the metabolic syndrome among Korean children. Nutr Metab Cardiovasc Dis 2013;23:785-91.  Back to cited text no. 12
Gorden CM, DePeter KC, Feldman HA, Grace E, Emans SJ. Prevalence of Vitamin D deficiency among healthy adolescents. Arch Pediatr Adolesc Med 2004;158:531-7.  Back to cited text no. 13
Ortega RM, Aparicio A, Rodriguez-Rodriguez E, Bermejo LM, Perea JM, Lopez-Sobaler AM, et al. Preliminary data about the influence of vitamin D status on the loss of body fat in young overweight/obese women following two types of hypocaloric diet. Br J Nutr 2008;100:269-72.  Back to cited text no. 14
Lenders CM, Feldman HA, Von Scheven E, Morewood A, Sweeney C, Wilson DM, et al., Elizabeth Glaser Pediatric Research Network Obesity Study Group. Relation of body fat indexes to vitamin D status and deficiency among obese adolescents. Am J Clin Nutr 2009;90:459-67.  Back to cited text no. 15
Kremer R, Campbell PP, Reinhardt T, Gilsanz V. Vitamin D status and its relationship to body fat, final height, and peak bone mass in young women. J Clin Endocrinol Metab 2009;94:67-73.  Back to cited text no. 16
Forsythe LK, Livingstone MB, Barnes MS, Horigan G, McSorley EM, Bonham MP, et al. Effect of adiposity on vitamin D status and the 25-hydroxycholecalciferol response to supplementation in healthy young and older Irish adults. Br J Nutr 2012;107:126-34.  Back to cited text no. 17
Salehpour A, Hosseinpanah F, Shidfar F, Vafa M, Razaghi M, Dehghani S, et al. A 12-week double-blind randomised clinical trial of vitamin D 3 supplementation on body fat mass in healthy overweight and obese women. Nutr J 2012;11:78.  Back to cited text no. 18
Saliba W, Barnett-Griness O, Rennert G. The relationship between obesity and the increase in serum 25(OH) D levels in response to vitamin D supplementation. Osteoporos Int 2013;24:1447-54.  Back to cited text no. 19
von Hurst PR, Stonehouse W, Coad J. Vitamin D supplementation reduces insulin resistance in South Asian women living in New Zealand who are insulin resistant and vitamin D deficient - a randomised, placebo-controlled trial. Br J Nutr 2010;103:549-55.  Back to cited text no. 20
Wamberg L, Kampmann U, Stødkilde-Jørgensen H, Rejnmark L, Pedersen SB, Richelsen B. Effects of vitamin D supplementation on body fat accumulation, inflammation, and metabolic risk factors in obese adults with low vitamin D levels - Results from a randomized trial. Eur J Intern Med 2013;24:644-9.  Back to cited text no. 21
Rankinen T, Kim SY, Pérusse L, Després JP, Bouchard C. The prediction of abdominal visceral fat level from body composition and anthropometry: ROC analysis. Int J Obes Relat Metab Disord 1999;23:801-9.  Back to cited text no. 22
Zhu W, Cai D, Wang Y, Lin N, Hu Q, Qi Y, et al. Calcium plus vitamin D3 supplementation facilitated Fat loss in overweight and obese college students with very-low calcium consumption: A randomized controlled trial. Nutr J 2013;12:8.  Back to cited text no. 23
Rosenblum JL, Castro VM, Moore CE, Kaplan LM. Calcium and vitamin D supplementation is associated with decreased abdominal visceral adipose tissue in overweight and obese adults. Am J Clin Nutr 2012;95:101-8.  Back to cited text no. 24
Major GC, Alarie FP, Dore J, Tremblay A. Calcium plus Vitamin D supplementation and fat mass loss in female very low-calcium consumers: Potential link with a calcium-specific appetite control. Br J Nutr 2009;101:659-63.  Back to cited text no. 25
Mason C, Xiao L, Imayama I, Duggan C, Wang CY, Korde L, et al. Vitamin D 3 supplementation during weight loss: A double-blind randomized controlled trial. Am J Clin Nutr 2014;99:1015-25.  Back to cited text no. 26
Gallagher JC, Yalamanchili V, Smith LM. The effect of vitamin D supplementation on serum 25(OH) D in thin and obese women. J Steroid Biochem Mol Biol 2012;136:195-200.  Back to cited text no. 27
Belenchia AM, Tosh AK, Hillman LS, Peterson CA. Correcting vitamin D insufficiency improves insulin sensitivity in obese adolescents: A randomized controlled trial. Am J Clin Nutr 2013;97:774-81.  Back to cited text no. 28
Saleh F, Jorde R, Sundsfjord J, Haug E, Figenschau Y. Causes of secondary hyperparathyroidism in a healthy population: The Tromsø study. J Bone Miner Metab 2006;24:58-64.  Back to cited text no. 29
Ni Z, Smogorzewski M, Massry SG. Effects of parathyroid hormone on cytosolic calcium of rat adipocytes. Endocrinology 1994;135:1837-44.  Back to cited text no. 30
McCarty MF, Thomas CA. PTH excess may promote weight gain by impeding catecholamine-induced lipolysis-implications for the impact of calcium, vitamin D, and alcohol on body weight. Med Hypotheses 2003;61:535-42.  Back to cited text no. 31
Xue B, Greenberg AG, Kraemer FB, Zemel MB. Mechanism of intracellular calcium ([Ca 2+ ] i ) inhibition of lipolysis in human adipocytes. FASEB J 2001;15:2527-9.  Back to cited text no. 32
Zemel MB, Shi H, Greer B, Dirienzo D, Zemel PC. Regulation of adiposity by dietary calcium. FASEB J 2000;14:1132-8.  Back to cited text no. 33
Sneve M, Figenschau Y, Jord R. Supplementation with cholecalciferol does not result in weight reduction in overweight and obese subjects. Eur J Endocrinol 2008;159:675-84.  Back to cited text no. 34
Zittermann A, Frisch S, Berthold HK, Götting C, Kuhn J, Kleesiek K, et al. Vitamin D supplementation enhances the beneficial effects of weight loss on cardiovascular disease risk markers. Am J Clin Nutr 2009;89:1321-7.  Back to cited text no. 35


  [Table 1], [Table 2], [Table 3], [Table 4]

This article has been cited by

Protective Association of Single Nucleotide Polymorphisms rs1861868-FTO and rs7975232-VDR and Obesity in Saudi Females

Lubna Ibrahim Al Asoom,Dina Tariq Al Afandi,Aseel Salah Al Abdulhadi,Nazish Rafique,Shahanas Chathoth,Ahmad A Al Sunni
International Journal of General Medicine. 2020; Volume 13: 235
[Pubmed] | [DOI]
2 The effect of vitamin D supplement on the score and quality of sleep in 2050 year-old people with sleep disorders compared with control group
Mohammad Shahi Majid,Hosseini Seyed Ahmad,Helli Bizhan,Haghighi Zade Mohammad Hosein,Abolfathi Mohammad
Nutritional Neuroscience. 2017; : 1
[Pubmed] | [DOI]


Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

  In this article
Material and methods
Article Tables

 Article Access Statistics
    PDF Downloaded363    
    Comments [Add]    
    Cited by others 2    

Recommend this journal